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Abstract. Making use of the expansion in a power series, the exact eigensolutions of two
electrons in a parabolic quantum dot are obtained. The quantum-size effects on the energy
spectra of two electrons are shown for the first time.

Advances in nanofabrication technology have made it possible to manufacture quantum dots
(QDs) containing one, two and more electrons, which are investigated experimentally and
theoretically. The experimental study of quasi-two-dimensional quantum dots is expanding
rapidly [1–6], and exchange and correlation effects are shown to be of great importance [7–
9] in such systems. Therefore, it is very important to have reliable methods to calculate
the electronic structures and showing the physical properties in QDs. Approaches to the
problem mainly include the ‘exact’ numerical diagonalization [7–8], numerical simulations
based on quantum Monte Carlo techniques [10] and Hartree–Fock calculations [7, 11–13].
Recently, convergent renormalized perturbation series in powers of the electron–electron
interaction were proposed for calculating the energy of a quantum dot consisting of two
electrons [9]. In this paper, we propose a method making use of the expansion in a power
series in wavefunctions of the relative motion of two electrons to obtain exact spectra in a
quantum dot. Based on the present results, the quantum-size effects on the spectra of two
electrons are shown for the first time.

In experimentally realized dots, the motion in thez direction is always frozen out into
the lowest subband. Since the corresponding extent of the wavefunction is much less than
the one inx–y plane, we can treat the dots in the two-dimensional limit of thin disks.
For most dots, a harmonic oscillator is a very good approximation to describe the lateral
confinement of the electrons [1, 11]. Hence, it is reasonable to write the Hamiltonian of
two electrons in such a parabolic quantum dot as follows:

H = −∇2
1 − ∇2

2 + 1

4
γ 2ρ2

1 + 1

4
γ 2ρ2

2 + 2

|ρ1 − ρ2|
(1)

where the effective atomic units are used. The effective RydbergRy∗ and the effective
Bohr radiusa∗ are taken to be the energy and length units, respectively. It is easy to see
that γ −1/2 is related to the confinement region of electrons in the dot.

The Hamiltonian of (1) can be separated into centre-of-mass and relative-motion terms
as

H = HR + Hr (2)

with

HR = −∇2
R
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2
γ 2R2 (3)
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and

Hr = −2∇2
r + 1

8
γ 2r2 + 2

r
(4)

where R = (ρ1 + ρ2)/2 ∇R = ∇1 + ∇2 r = ρ1 − ρ2 and ∇r = (∇1 − ∇2)/2. This
separability and the cylindrical symmetry of the problem allow us to write the two-particle
wavefunctions in plane polar coordinatesr = (r, ϕ) in the form8(R)φ(r) exp(imϕ). The
spatial part of the total wavefunction is symmetric (antisymmetric) with respect to particle
permutation(ϕ → ϕ + π) for even (odd) azimuthal quantum numbersm. Since the Pauli
exclusion principle requires the total wavefunction to be antisymmetric, we therefore have
spin singlet(s = 0) and triplet(s = 1) states for even and oddm [14], respectively. The
energy eigenvalues of (3) are given by

E(NR, M) = (2NR + |M| + 1)γ (5)

with radial (NR = 0, 1, 2 . . .) and azimuthal(M = 0, ±1, ±2 . . .) quantum numbers. The
eigenvalues of the relative motion excluding the electron–electron interaction are also given
by

E0(nr , m) = (2nr + |m| + 1)γ (6)

with the corresponding radial and azimuthal quantum numbersnr = 0, 1, 2 . . . and
m = 0, ±1, ±2 . . .. However, we should solve the Schrödinger-like equation

Hr

[
φ(r) exp(imϕ)

] = E(m)
[
φ(r) exp(imϕ)

]
(7)

to get the energy of the relative motion including the electron–electron interaction. It is
easy to find the equation satisfied by the functionφ(r):

d2φ

dr2
+ 1

r

dφ

dr
+

(
E(m)

2
− 1

r
− m2

r2
− 1

16
γ 2r2

)
φ = 0. (8)

Now, we are prevented from analytically obtaining exact solutions of the eigenvalue problem
because (8) with suitable boundary conditions is beyond the analytical problem of confluent
hypergeometric equations. In this paper, we use the method of series expansion [15] to
obtain exact series forms in different regions of (8) and the exact values ofE(m) and, then,
the exact solutions of two electrons in the quantum dot.

It should be noted that zero and infinity are regular and irregular points of (8),
respectively. In the region 0< r, we have a series solution, which has a finite value
at r = 0, as follows:

φ(r) = Ar |m|
∞∑

n=0

anr
n (9)

whereA is a constant anda0 is equal to 1. Noting thatan are equal to zero asn is equal
to a negative integer, the otheran can be determined by the following recurrence relation:

an =
(

2an−1 − E(m)an−2 + 1

8
γ 2an−4

)
/(4|m| + 2n)n for n = 1, 2, 3 . . . . (10)

In the regionr < ∞, we can obtain a normal solution. It approaches zero atr = ∞ and is
found in the form

φ(r) = B exp

(
−1

8
γ r2

)
rs

N∑
n=0

bnr
−n (11)

where

s = E(m)/γ − 1 (12)
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b0 = b1 = 1

bn = 2bn−1 − [(s − n + 2)2 − m2]bn−2 for n = 2, 3, 4 . . .
(13)

and B is a constant. We should point out that (9) and (11) are suitable for numerical
calculations in a regions of small and larger, respectively.

In order to match the solution of (9) with that of (11), we giveT solutions around
R1, R2 . . . and RT , which are the proper points for solving (8) exactly. The solution of
uniformly convergent Taylor series aroundRi(i = 1, 2 . . . T ) is written as follows:

φ(r) = Ci

∞∑
n=0

cin(r − Ri)
n + Di

∞∑
n=0

din(r − Ri)
n (14)

whereCi andDi are constants,ci0 anddi1 are equal to 1, andci1 anddi0 are equal to 0.
The cin anddin can be determined by recurrence relations.

Figure 1. E(nr , m; NR, M) normalized byγ versusγ −1/2 for a, b, c, d, e, f, g, h, i, l, m, n,
o and p states with the quantum numbers indicated in table 1. The solid circles represent those
obtained by using the ‘exact’ diagonalization method.

Using the matching conditions atr = Ri(i = 1, 2 . . . T ), and the 2×2 transfer matrices,
we can get the equation for eigenenergiesE(nr, m) easily. The values ofE(nr, m) and
φnrm(r) are obtained numerically. For the sake of convenience, we defineEr(nr, m) as the
difference betweenE(nr, m) andE0(nr , m), i.e.,

Er(nr, m) = E(nr, m) − E0(nr , m). (15)
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Then, the energy eigenvalues of the Hamiltonian in (1) are the sum of the centre-of-mass
energy and the energy of the relative motion as follows

E(nr, m; NR, M) = E(nr, m)+E(NR, M) = [2(NR+nr)+|M|+|m|+2]γ +Er(nr, m).(16)

Before the present results are shown and discussed, it is worthwhile to note the way
to indicate the quantum levels of two electrons in QDs. As shown in (16), the levels
E(nr, m; NR, M) can be indicated by four symbolsnr, m, NR and M. The even and odd
m correspond to the spin singlet(s = 0) and triplet (s = 1) states, respectively because
of the Pauli exclusion principle as mentioned above. We have states 1s, 2p, 2s, 3d, 3p
(1S, 2P, 2S, 3D, 3P) and so on if the principal quantum numbersn = nr + |m| + 1
(N = NR + |M| + 1) are used instead ofnr (NR) and the notation s, p, d. . . (S, P, D. . .) is
used for|m|(|M|) = 0, 1, 2 . . . .

Table 1. Exact quantum levels of two electrons in QDs with differentγ . The level sequences
are in order of increasing magnitude. For the sake of convenience, the short notation, i.e., a, b, c
and so on, is used to indicate the quantum numbers (nr , m; NR, M; s) and to show the changes
of the level order. The energy unit isRy∗.

γ (γ −1/2) 1.0(1.0) 0.2(2.2361) 0.05(4.4721)

a: (0,0;0,0;0) (a) 3.3196 (a) 0.8816 (a) 0.2962
b: (0,1;0,0;1) (b) 3.8278 (b) 0.9450 (b) 0.3062
c: (0,0;0,1;0) (c) 4.3196 (d) 1.0776 (d) 0.3310
d: (0,2;0,0;0) (d) 4.6436 (c) 1.0816 (c) 0.3462
e: (0,1;0,1;1) (e) 4.8278 (e) 1.1450 (h) 0.3476
f: (1,0;0,0;0) (f) 5.1472 (h) 1.2156 (e) 0.3562
g: (0,0;1,0;0) (g) 5.3196 (f) 1.2402 (i) 0.3810
h: (0,3;0,0;1) (h) 5.5174 (i) 1.2776 (f) 0.3854
i: (0,2;0,1;0) (i) 5.6436 (g) 1.2816 (g) 0.3962
j: (1,1;0,0;1) (j) 5.7438 (j) 1.3170 (j) 0.3968
k: (0,1;1,0;1) (k) 5.8278 (k) 1.3450 (k) 0.4062
l: (1,0;0,1;0) (l) 6.1472 (n) 1.4053 (n) 0.4066
m: (0,0;1,1;0) (m) 6.3196 (l) 1.4402 (o) 0.4240
n: (0,4;0,0;0) (n) 6.4693 (o) 1.4594 (p) 0.4310
o: (1,2;0,0;0) (o) 6.5956 (p) 1.4776 (l) 0.4354
p: (0,2;1,0;0) (p) 6.6436 (m) 1.4816 (m) 0.4462

We have performed numerical calculations for energy levels of two electrons in QDs
with γ between 0.05 and 5. As shown in table 1, the two-electron spectra vary not only
in the values but also in the level ordering asγ changes from 0.05 to 1. In order to better
show the quantum-size effects and compare with others, we have plotted most of them
normalized byγ as functions ofγ −1/2 in figure 1. It is readily seen that the results are in
good agreement with others [7, 9] and that the energy-level structure is dramatically changed
as theγ −1/2 changes from 0 to 4. As illustrated in figure 1 and table 1, an important aspect
of the quantum-size effects is the changes of the level-ordering and the level differences,
and then, the crossover of two levels can appear asγ −1/2 (γ ) is larger (less) than one.

For a better understanding of the quantum-size effects, it is interesting to study the
Er(nr, m) defined by (15). In figure 2, theEr(nr, m) is plotted as a function ofγ .
As shown in the figure, theEr(nr, m) increases withγ and the ordering is as follows:
Er(0, 0) > Er(1, 0) > Er(2, 0) > Er(0, 1) > Er(1, 1) > Er(0, 2) > Er(1, 2) . . . .

It is accurate enough to calculate theEr(nr, m) with the use of the first-order perturbation
as γ is sufficiently large compared with electron–electron interaction. Then,Er(nr, m) is
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Figure 2. Er(nr , m) versusγ for 1s, 2s, 3s, 2p, 3p, 3d, 4d, 4f and 5g states.

given by

Er(nr, m) = 〈φnrm(r)

∣∣∣∣2

r

∣∣∣∣ φnrm(r)〉 (17)

where φnrm(r) is a normalized radial wavefunction of (8) without the electron–electron
interaction term. Using (17), we can easily find the ordering mentioned above. The values
of Er(nr, m) are proportional toγ 1/2. However, bothE(NR, M) andE0(nr , m) shown in
(5) and (6) are proportional toγ . As γ −1/2 (γ ) is less (larger) than one , the level-ordering
is mainly determined by the sum ofE0(nr , m) andE(NR, M). It can be strongly changed
by Er(nr, m) if γ −1/2 (γ ) is much larger (less) than one. This is the reason why the
quantum-size effects appear.

In conclusion, we have used different series solutions in different regions for the radial
equation of the relative motion of two electrons to obtain the exact solutions. Calculated
results are in good agreement with those obtained by using the ‘exact’ diagonalization
method [7, 9]. Based on the results, the quantum-size effects are clearly shown.
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